Wecome to HeBei ShengShi HongBang Cellulose Technology CO.,LTD.

  • fff1
  • fff2
  • fff3
  • fff4
  • Group 205.webp1
HeBei ShengShi HongBang Cellulose Technology CO.,LTD.
hpmc dextran hydroxypropyl methyl cellulose
hpmc dextran 70 hydroxypropyl methylcellulose
rubber powder production line

Rubber Powder is a cutting-edge recycled material obtained by grinding waste rubber into fine granules, widely used across polymer compounds, tire production, coatings, industrial gaskets, and more. Amidst rising sustainability standards and advanced recycling technologies, understanding rubber powder uses is vital for manufacturers, engineers, and buyers seeking cost-effective and high-performance solutions. This in-depth guide explores market trends, technical data, production processes, and Rubber powder-821 as a standout product backed by real-world applications and professional insights. 1. Industry Trends & Market Outlook (2024) Global Market Size (2024E): USD 2.4 Billion. Projected CAGR (2024-2029): 7.9% ( Grand View Research, 2024 ). Key Growth Drivers: Circular economy push, tire recycling mandates, cost reduction for rubber compounds, improved nitrile rubber powder resilience. End-use Verticals: Tires, industrial floorings, coatings, sealants, shoe soles, modified asphalt, and sports fields. Emerging Techs: Cryogenic/electro-mechanical grinding, nano-structured fine rubber powder , hybrid rubber/talc blends. 2. What is Rubber Powder? Technical Overview & Main Parameters Material Source & Types Derived from scrap tires, SBR, or nitrile rubber powder . Types include coarse (180-400μm), fine (40-100μm), or surface modified grades for rubber powder coating or anti-tack applications. Key Physical Properties Particle Size: 40–400 μm Moisture Content: <0.5% Purity: >98.7% (free from steel/textile) Bulk Density: 450–650 kg/m 3 International Standards ISO/TS 9273: Rubber recycling - Particle size spec. ANSI/ASTM D5603 for Recycled Rubber Quality REACH/FDA for coating & compound approvals Rubber Powder Parameters & Rubber Powder Uses Table Application Grade (Particle Size) Industry Value-Added (USD/ton) Technical Benefits Rubber powder uses in Tire Tread 80-120 mesh (≤175μm) Automotive 115-150 Good abrasion & consistency Rubber powder for Asphalt Modifier 40-80 mesh (450–180μm) Infrastructure 120-160 Enhanced elasticity, crack resistance Nitrile rubber powder for EPDM Compounds 80–200 mesh (175–75μm) Industrial/Automotive 140-175 Oil/solvent resistance, anti-tack Rubber powder coating Microfine (<63μm) Coating/Construction 155-190 UV, chemical resistance, tight film Talc powder for rubber blend Blend Rubber Compound 25-40 Improves processing, prevents sticking 3. Production Process: Manufacturing Flow of Rubber Powder Stepwise Manufacturing Diagram – Rubber Powder Uses Supply Chain 1. Raw Material Collection: Waste tires, SBR/EPDM scrap, NBR pieces (pre-inspected for contaminants) 2. Primary Shredding: Hydraulic crushers reduce size to 40–100mm chips. Magnetic separator removes steel wire. 3. Fine Grinding/Milling: Cryogenic or ambient mills crush chips to required mesh. Sifter ensures size uniformity (e.g., 80–200 mesh for fine rubber powder ). 4. Surface Modification (Optional): Rubber anti-tack powder, talc powder for rubber, or chemical additives blended in for processing optimization. 5. Packaging & QC: Graded powder packed in moistureproof bags. Samples sent for ISO/ASTM testing—particle size, purity, moisture, and ash content are validated. 6. Supply: Delivered globally for tire, coating, sealant, and downstream rubber powder uses . [▶ Watch Rubber Powder Plant Video (3:28)] 4. Featured Product: Rubber powder-821 Model: Rubber powder-821 | Official Product Page Particle Size: 90–150 μm (typically 100 mesh) Color: Black Purity: ≥99.2%, steel-free Moisture: ≤0.20% Bulk Density: 540–665 kg/m 3 Surface Modifier: Talc-powder blend option for improved anti-tack Compliance: ISO/TS 9273, ANSI D5603, RoHS, REACH Service Life: Up to 20 years in standard tire applications Applications: Tire compounds, rubberized asphalt, sealants, shoe soles, anti-tack powders, coatings Product Comparison Table: Rubber powder-821 vs Key Competitors Brand Product Mesh Size (μm) Purity (%) Moisture (%) ISO Certified Rubber Powder Price (USD/ton) HuaBang Rubber powder-821 90–150 ≥99.2 ≤0.2 Yes 135–160 Genan GENAN Fine Powder 63–180 ≥98.5 ≤0.5 Yes 140–170 Liberty Tire Micro-Rubber® 75–200 ≥97.6 ≤0.6 Yes 152–182 Entech UltraFine Powder 100–200 ≥98.2 ≤0.4 Yes 142–160 5. Technological Advantages: Why Choose Fine Rubber Powder? Fine rubber powder provides increased surface area for better adhesion in rubbers and coatings. Surface-modified powders enable customizable rubber powder uses including anti-tack, heat resistance, & chemical durability. Reduces virgin polymer consumption by 10–25% per formulation ( Elsevier Journal, 2021 ). Meets stringent RoHS, REACH, and ISO environmental compliance. Optimized for both hot melt and aqueous rubber powder coating processes. 6. Tailored Solutions: Customization & Support Customization Options Mesh Size: From 40 mesh (coarse) to 200 mesh (ultrafine) to control modulus, texture, and application fit. Surface Modification: Blending with rubber anti tack powder or talc powder for rubber for optimized processing. Packaging: 20kg, 25kg, 600kg super sacks depending on project size or automated production lines. On-site Technical Training: For major industrial clients installing new rubber powder production line equipment. Certified Manufacturer: HuaBang (22+ years rubber recycling expertise). Key Certifications: ISO 9001:2015, ISO/TS 9273, ANSI D5603, REACH-Compliant. Major Partners: Goodyear, Michelin, State Grid, LG Chemical. Reference: Major use in rubber powder uses for national expressway asphalt projects since 2018. 7. Application Case Studies & Industry Feedback Case 1: Rubber powder-821 in Tire Compounds ( Leading global tire OEM, 2023 ) Formula: 9% Rubber powder-821 + SBR + Silica + Antioxidant Achieved: 7% wear improvement; cost savings 12%/batch; passed ISO 28580 rolling resistance test Customer Quote: “High purity and uniformity of powder-821 allowed for seamless integration into our green tire recipes” ( Lead Material Engineer, APAC ). Case 2: Modified Asphalt in Municipal Infrastructure Project: State expressway (500km), completed 2022 Composition: 14% rubber powder-821 w/ talc powder for anti-tack Result: Rutting reduced by 31%, surface microcracking reduced, cost per km decreased by 10.4% Case 3: Rubber powder coating for Industrial Floors Usage: Blended microfine powder with latex emulsion, sprayed onto warehouse floors Benefits: Enhanced non-slip, chemical & UV stability, wears 2x slower than mineral-based coatings Standard: ASTM D4060 (Abrasion), ISO 8191 (Flame Spread) 8. Professional FAQ: Rubber Powder Terminology Explained Q1: What is the difference between fine rubber powder and standard rubber powder? A: Fine rubber powder (usually <100μm) has a larger surface area, providing superior dispersion and adhesion in polymers, coatings, and sealants. Standard powder (150–400μm) is mainly used for bulk fill or cushioning. Q2: How does nitrile rubber powder differ from SBR powder in applications? A: Nitrile rubber powder is oil/chemical resistant and often used in industrial gaskets and automotive sealants, while SBR powder is favored in tires, rubber flooring, and shoe soles for abrasion and cost benefits. Q3: What is the function of rubber anti tack powder ? A: Anti tack powders (talc/silica or specialty blends) prevent rubber sheets from sticking during mixing, storage, or transport, speeding up production lines and enhancing compound uniformity. Q4: Are there industry-recognized standards for rubber powder uses ? A: Yes. Key standards include ISO/TS 9273 (size and purity), ANSI/ASTM D5603 (recycled rubber), ASTM D412 (mechanical testing for rubber blends), and REACH/FDA when used in coatings or food-contact items. Q5: What are the key parameters to control when choosing rubber powder? A: Particle size (mesh), moisture content, steel fiber contamination, ash, surface chemistry (e.g., talc-coated), and international certifications. Q6: How does talc powder for rubber complement rubber powder? A: Talc acts as a processing aid, prevents sticking, and improves compound flow. In rubber powder, talc coating can further facilitate blending and anti-tack properties in extrusion or calendering. Q7: What support is available from the supplier for commissioning a rubber powder production line ? A: Suppliers such as HuaBang provide design consultation, equipment specification, on-site training, and post-installation technical support to ensure compliance with ISO/ASTM standards and maximum process efficiency. 9. Delivery, Warranty & Support Lead Time: Standard shipment within 7–15 business days after order confirmation. Warranty: 2-year product guarantee. Technical support provided throughout project lifecycle. Quality Control: Every batch tested for size, purity, and performance per ISO/ASTM. Support Channels: 24/7 technical hotline, rapid response (<1h for urgent issues), on-site consultation available for large-scale users. Customized supplier audits and documentation for major contracts in petrochemical, metallurgy, and water supply sectors. 10. FAQ: Frequently Asked Questions about Rubber Powder Uses Q1. Can rubber powder replace virgin rubber completely? A: It is generally used as a partial replacement (up to 35% in most compound recipes) to balance cost and mechanical performance. Q2. What is the most cost-efficient rubber powder price range in 2024? A: For fine mesh (80–120 mesh) rubber powder, USD 135–172/ton depending on purchase volume and surface modification. Q3. Which industries most benefit from rubber powder uses ? A: Tire manufacturing, asphalt modification, shoe sole compounding, industrial gaskets, and high-performance rubber powder coating . Q4. How long does Rubber powder-821 last in real applications? A: Up to 20 years in properly formulated tire treads; 6–12 years in external sealants or coatings under normal UV exposure. Q5. Any certifications required for export? A: Yes – ISO/TS 9273, REACH, MSDS, and local environmental certification are mandatory for key markets. 11. References & Further Reading “Recycled rubber powder has revolutionized the tire and elastomer sector, providing a circular solution with stable costs and eco-profile. Its adoption in polymer modification has seen a steady increase, driven by performance and sustainability mandates.” — Rubber News Recycling Forum, 2023 “Multi-functional rubber powder uses span from high-performance asphalt to advanced polymer coatings, validated by international standards and real-world case studies.” — Construction & Building Materials, Elsevier, 2021 “The maturity of rubber powder production line technology combined with ISO/TS based QC has made China and EU leaders in the recycled rubber market.” — Grand View Research, 2024 Explore detailed product data and technical support at: Rubber powder-821

  • 40000tons
    Group_492

    Production

  • 20+years
    Group_493

    Experience

  • 5000+
    Group_494

    Acreage

Product Category
  • polypropylene concrete

    Hydroxypropyl Methylcellulose (HPMC) is a multifaceted compound that has garnered significant attention for its versatile applications across various industries. As someone with years of experience navigating the SEO landscape and understanding consumer needs, I can share insights into this compound that will elevate your understanding and buying experience. HPMC is a chemically modified cellulose polymer that boasts excellent properties such as high viscosity, solubility in water, and film-forming capability. Its non-toxic, hypoallergenic, and biodegradable nature makes it an optimal choice for numerous applications, in particular within the construction, pharmaceutical, and food industries. In the construction sector, HPMC is revered for its role in enhancing the performance of building materials. It significantly improves the workability and water retention of cement-based products such as tile adhesives, cement plasters, and mortars. By ensuring optimal curing processes, it enhances the end-product's durability and strength, reducing the likelihood of cracks and ensuring a long-lasting finish. For construction professionals seeking materials that promote efficiency and reliability, HPMC is an undoubtedly valuable addition. In the pharmaceutical arena, HPMC serves a critical function as an excipient. Its use in controlled-release formulations, where it acts as a matrix former, helps in modulating drug release rates, ensuring that therapeutic effects are distributed consistently over time. Additionally, it’s used in the fabrication of capsules and coatings, offering a reliable solution for those needing medication delivery that is both efficient and safe. Pharmaceutical experts regard HPMC as an indispensable ingredient due to its stability, safety, and effectiveness. buy hydroxypropyl methylcellulose The food industry benefits greatly from HPMC’s unique properties as well. It serves as a stabilizer, emulsifier, and thickener in diverse food products. For instance, in gluten-free baking, it provides the dough elasticity that gluten normally would, maintaining the texture and integrity of the final product. Food technologists appreciate its role in nailing the texture and consistency of food items without compromising on health or safety. A growing nod toward sustainability makes HPMC a notable subject of interest. Given its biodegradable nature, the product aligns with eco-friendly practices and offers industries a sustainable alternative to other synthetic compounds. Companies aiming to reduce their environmental impact are increasingly exploring HPMC as an integral component of their production processes. As you consider purchasing hydroxypropyl methylcellulose , it’s important to source from reputable suppliers who adhere to quality standards. Ensure that the suppliers you engage with provide transparent information regarding product specifications and certifications. This ensures that you are receiving a product that meets industry benchmarks for quality, safety, and efficacy, thereby enhancing your trust in its performance. In conclusion, the multi-industry utility of HPMC cannot be overstated. Its impressive range of properties makes it a versatile compound suitable for innovative applications across various domains. With the added benefit of being eco-friendly, its adoption provides not only performance advantages but also aligns with environmental sustainability goals. By embracing this compound, industries can witness enhanced product performance while contributing to a greener planet. When purchasing HPMC, prioritize quality, and certification to maximize its benefits in your specific application.

  • microfibre synthétique

    The Rise of Manufactured Synthetic Fibers Transforming the Textile Industry In today’s modern world, the textile industry has witnessed a remarkable transformation brought about by the advent of manufactured synthetic fibers . Synthetic fibers, which are man-made through chemical processes, have revolutionized the way we think about clothing, textiles, and consumer goods. These fibers, which include polyester, nylon, and acrylic, have become ubiquitous, influencing fashion, design, and even sustainability practices. Manufactured synthetic fibers emerged in the early 20th century, with the invention of rayon in 1910 marking the beginning of a new era in textiles. Following this, the development of nylon by Wallace Carothers in 1935 represented a pivotal moment; it was the first completely synthetic fiber and played a significant role in affecting various industries, most notably in clothing and military applications during World War II. The post-war boom further popularized synthetic fibers, leading to their widespread acceptance and extensive use. One of the most compelling advantages of synthetic fibers is their durability. Unlike natural fibers, synthetic options tend to be more resistant to wear and tear, moisture, and environmental factors. This durability translates into longer-lasting products, which can be particularly beneficial in applications ranging from outdoor gear to industrial use. For instance, the application of polyester in the production of athletic wear has led to the creation of garments that can withstand rigorous activity while providing comfort and breathability. Moreover, synthetic fibers can be engineered to meet specific requirements. For instance, manufacturers can adjust properties like elasticity, moisture-wicking ability, and thermal insulation to cater to consumer needs. This customization makes synthetic fibers an appealing choice for many brands eager to offer innovative textiles. In the fashion industry, this versatility allows for the creation of striking designs with vibrant colors that remain intact through multiple washes, unlike some natural fibers that may fade over time. manufactured synthetic fibers However, the rise of manufactured synthetic fibers has not come without drawbacks, particularly concerning environmental impacts. The production of synthetic fibers is often energy-intensive and can contribute to pollution if not managed properly. Additionally, synthetic fibers are derived from petrochemicals, raising concerns about sustainability and dependence on fossil fuels. The pressing problem of microfibers shedding from synthetic garments during washing has also gained attention, as these tiny particles enter water systems and pose a threat to marine life and ecosystems. In response to these challenges, the industry is actively exploring solutions aimed at reducing the environmental footprint of synthetic fibers. Innovations in recycling technologies have made it possible to reclaim and reuse polyester from discarded garments. Companies like Patagonia and Adidas are leading the way by launching initiatives to incorporate recycled synthetic fibers into their products. By transitioning to a circular economy model, the fashion industry can reduce waste and lessen the reliance on virgin materials. Furthermore, advancements in bio-based synthetic fibers are gaining traction as an alternative to traditional petrochemical-based options. Brands are increasingly investing in research to develop fibers synthesized from renewable resources, such as algae or agricultural by-products. These bio-based synthetics promise to provide the benefits of traditional fibers while significantly reducing the environmental impact. Consumer awareness is an essential driver of change in this sector. As sustainability becomes a key factor in purchasing decisions, consumers are more equipped than ever to demand transparency from brands regarding their fiber sources and manufacturing processes. This shift is prompting many businesses to re-evaluate their practices, thus fostering a more sustainable textile industry. In conclusion, manufactured synthetic fibers have undeniably altered the landscape of textiles, offering unprecedented benefits in terms of durability, versatility, and innovation. However, this evolution comes paired with environmental challenges that require urgent attention. By increasing awareness and embracing sustainable practices, the textile industry can work towards a future where synthetic fibers continue to play a vital role while minimizing their ecological footprint. The dialogue surrounding this balance of innovation and sustainability is crucial as we move forward, striving for a responsible and forward-thinking approach to textiles that benefits both consumers and the planet.

Get Free Quote or Can call us At Our Emergency Services

+86-131-8048-6930

Our Advantage
We have three
advantages
  • Group_497

    200000 Viscosities

    Excellent product

    We can produce pure products up to 200,000 viscosities

  • Group_496

    40000 tons

    High yield

    We don’t stop production all year round, and the annual output can reach 40,000 tons

  • Frame

    24 hours

    Quality service

    We provide 24-hours online reception service, welcome to consult at any time

———— Inquiry Form

Schedule A services


If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.


TOP